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0Introduction. Because of the high cost of testing, many large
weapon systems cannot be tested over the full range of possible battle-
field parameters. As a result, the developer and the reviewing authori-
ties have come to rely on system simulation to demonstrate the system
capability over the range of untested parameters. These simulations
also are useful to investigate the change in performance resulting from
possible subsystem modifications. In some important programs, the
;overnment relies on simulations of competing systems to indicate the
:elative performance of these systems in situations for which no tests
have been made, although of course, simulations such as these have been
validated as much as possible by system tests. In these instances the
procurement decision rests heavily on the validity of the system simula-
tions. Consequently the need arises for a generally accepted procedure
which is undoubtedly fair to each contractor and provides the maximum
amount of objective judgment about the validity of the simulation. In
any such procedure the Government must be able to rapidly evaluate
simulations furnished from a variety of sources.

The procedure must be workable and economicai -- that is it must
apply a lot of leverage to the problem with regards to manpower, --

computer programmers and engineers -- the cost, -- computer running
time and validation experiments -- and elapsed time. Implicit in this
discussion is that planning for system simulation validation must be
completed before the first system RFQ is issued.

Many methods are used for system simulations: Monte Carlo, analog,
C-> hybrid, and digital simulation of differential equations. A variety of

LUL special and general purpose programs are available for the simulator's
__.J use. Among then are "SPERT", "ACSL," and HIT PRO." The problem for

LAM the user of these simulations comes when he needs to compare theory
with experiment and asks the questions: How good is the theory? Is
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the agreement between theory and experiment good enough to validate the
simulation? (As an example of these questions see Pastrick (1, 2).)
Another question to be considered is: Could it be that the experiment
was defective in any way?

Many simulations have not been prepared in such a way so that they
can be used to answer these questions. In the first place, the simula-
tions are not designed to adjust parameters to fit data. In the
second place, the system itself may be so complex that the computing
time for complete system simulation is so long that adjusting the
parameters to achieve a better fit between simulation and experiment is
not feasible. Thus a new procedure is needed to combine theory and
experiment.

The procedure suggested by this paper is the use of the least chi
square computer program to simulate the major subsystems of a system
simulation and validate it against test data.

Criteria for comparison, and iteration procedure. In fitting data
to non-linear models of system performance such as systems of differen-
tial equations, the usual criteria is the iterative minimization of the
sum of the squares of the residuals. Other criteria, such as generalized
least squares have also been considered and demonstrated (3). As
Aitken (4) noted with respect to generalized least squares, the criteria
to be used are a matter of choice. In other words, we are free to
decide whether least squares is the best criteria for our purpose. A
particular concern with the ordinary least squares procedure is whether
the residuals are consistent with being drawn from a random sequence.

Many tests have been devised (5) for this purpose. One test of
special interest in this paper is the Box-Pierce (6) test which is the
sum of the squares of the autocorrelation coefficients divided by
their variances. A typical term is (r)SV,'1

Given all these tests, no way had been devised to adjust the
parameters to better satisfy the data until it was proposed that this
criteria be combined with least squares to obtain a new criteria:
least chi-square (Moore, 7, 8, 9). By finding the parameters which
minimize chi-square, the probability is maximized that the residuals
come from a population with a given variance , and from a random
sequence. The variance must be independently determined from theory or
measurement as the measurement error.

Thus, a probability can be generated from the computed chi-square
which permits the statistician and decision-maker to compare the "good-
ness of fit" of the simulation of several quite different systems. In
this way a direct comparison of the validity of the simulations can be made.
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The figure of merit, (chi-square total) js the sum of XIS
and , he Box-Peirce number e4 &

Derivation: We will follow the procedure and most of the notation
of Aitken (4) for generalized least squares:

Let the representation of the vector of data:

us (u (Xi). u (x,), ... u (xn ) )

by the theoretical vector, be:

y= (y(x ). y(x). Y(Xn

Ul. Ui - Y1*"

Let &k dewote a columvector of k + I coefficients independent
ofysuch that:

O° = (O91 * . e ... e+

Define the matrix P* as the matrix whose ith row is

i i* ay,* .. ar.,

(The asterisk symbol * will be used to indicate an estimate of the
indicated sysbol where convenient. However, it will not be used on
complex expressions involving qrlup, and rj because of typographical
difficulties).

In this expression v-a is defined as follows:

rolo . ;v,-, o .., s 00... .

0010..:

In these, the subscript "j" indicates a unit value in each of the ith
rows and (i + j)th column.

If v is the variance of r , then

O *d'd +1 r'IV

and:

(Note the difference between V;' * . 4
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On differentiating ( X) with respect to ( Ol) and substituting

(d) P* P *(8*1 -*.

as an estimate of the increment of the resJi~ials needed to minimize
the algorithm for C(Oebecomes:

ae*] a [P'- r P'-1 P- r u*.

2r V- -

(d)(d)/e *-2, (rJ) V 3

r I t~leii i- I

If P equals I, the expression forue' reduces to CPO / -
V

which is the same as the algorithm for ordinary non-linear least squares
used in such computer programs as provided by both IBM and CDC libraries
as well as in SAAM-27.

By inspection, PI8preplaces Poin the ordinary expression. To
modify the ordinary expression,I1is computed. P*' is postmultiplied
by 1 , and the product placed in the computer memory where PA' is
normally stored. is substituted for d whereever it occurs and
no further change is need in the iteration procedure.

These expressions have been programmed into the Simulation And
Analysis Modeling (SAAM-27) program of Berman et al, (10, 11) as indi-
cated above, multipying P*', by r , and letting the program proceed from
that point. The usual iteration continues. The computer program
resulting from this change has been designated for control purposes as
SAACH, and has been tested on the CDC 6600 at ARRADCOM, Dover, to deter-
mine the following questions:

1. How much change is there in the final parameter estimates?

2. What change, if any, is there in the number of iterations?

3. What change is there in the time per iteration?

Four problems of different origin and which use different mathe-
matical models have been run on the SAACH program to answer the above
questions. In the first example: Gun Chamber Pressure Waves, the
mathematical model used is the superposition of two pressure waves
generated by analytic models in the program, with the adjustment of up
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to eight parameters to obtain the best fit to observed data. In the
second example, an aircraft control system simulation, the mathematical
model is a set of four linear differential equations, simulating the Yaw r.
Damper system on an aircraft. These equations were solved by a special
procedure developed for SAAH-27 by Berman et al. (12), with up to four
adjustable parameters. In the third example, a biomedical problem
furnished as a test case by Miss Rita Straub of Brookhaven National
Laboratory, the mathematical model was a set of seven coupled linear
differential equations with five adjustable parameters; this was solved
by the same method as used in the second case. In the fourth and final
example: KEWB Kinetics, a simulation of the nuclear reactor transients
of the Kinetic Experiment Water Boiler, the mathematical model was an
extremely non-linear set of coupled differential equations as described
by Hetrick and Gamble (13). These equations were integrated by the
fourth order Runge-Kutte integration procedure of SAAM-27, with only
one adjustable parameter. The results of these analyses were discussed
in detail at the 1979 Design of Experiments Conference (9). Abbreviated
discussions of the result of each problem follow.

Gun Chamber Pressure Waves. Unusual pressure waves suggestive of
an acoustic wave superposed on the normal gun chamber pressure-time
curve, have occurred in tests of the XM211 propellant charges at zone 3
for the M101 projectile in the 155mm gun, (Knutelski, (14)). The
mathematical model used was:

P a PI exp ( - (t-t) 2/2a12)

+P2 exp( - (t-t2)2/201 '7 x inf2wf (t-t 3 ) + wr23

Three parallel cases were computed once the fit was good enough to
permit iteration with different ranks of autocorrelation. Because of
computing difficulties which arose when trying to converge on six or
seven parameters, the iteration was initially restricted to four para-
meters: Once the fit was good and had converged using these four para-
meters, their final values were used as initial values for a six-parameter
fit. Finally, all eight parameters were allowed to vary.

Two results of this series of analysis are plotted in Figs 1, and
2. The case numbers are BGK-3.30356301-0, and 3.30356511-5. The first
has no autocorrelation coefficients; the second, 5, a third, (not
shown), 10. The parameters for these cases are given in Table 1, (note
that the last three digits only of the identifier are used here). Some
parameters are quite different from case to case.
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The apparent fit from the figures is best for the case of five
autocorrelations given in Fig. 2. The fit of this case was also
better than that for 10 autocorrelations which is not illustrated.

The value of the sum of the squares of the residuals as shown in
Table I was actually much smaller for cases 511-10, and 301 than for
511-5 yet the fit as noted above was not as good.

The last row of Table 1, gives the values of the experimental
variances assumed for these cases. These were arbitrary numbers taken
as example only, because the precision of the measurement system is
probably much greater than the value given; i.e., the variances should
be smaller. However, if smaller values were used, such as when case
511-10 is compared to 511-5, the weight on the sum of the squares is
greater but the goodness of fit appears to decrease, thus illustrating
the need for least chi-square iteration.

Table I also shows the effect of least chi-square in terms of
number of iterations, and computing time. When five autocorrelations
were used, as in case 511-5, only a small increase in number of itera-
tions is found and a moderate increase in computing time as compared to
301. If ten autocorrelations were used, as in 511-10, the number of
iterations increased, and the time increase was 1.8 times greater, giving
about double the increase in time for double the number of autocorrela-
tion coefficients.

Table 2 shows the a~toco5 relationj up to order 20 for the three
cases. The values of X , X2 , and X for the number of autocorrela-
tions used (0, 5, 10) is shown in the last rows of this table.

Aircraft Control Systems. A typical aircraft yaw damper design pro-
blem (15), was analyzed to illustrate the use of least chi-square. To
optimize the design, four parameters may be adjusted to give the best fit
to a desired response curve. These parameters are 4 , * , J , andj
These correspond to the parameters L(0,4), L(4,1), L(4,I), L(4,2) and
L(4.3). A vector of a random sequence of 2normally distributed errors
from a population with variance of (.033) was added to the data vector
to simulate the effects of sampling error; this may be considered to
represent an allowable error or tolerance in fitting the curve.

2
The value of was set at (.033) , six autocorrelations were used

for the problem which was identified as CONRLM 4.011-6. Another run
was used on the same data with the standard least squares algorithm.
Fig. 3 shows the fit obtained for the data and is typical of the results.
Table 3 showns the number of iterations for each case. It took 4 itera-
tions for the ordinary algoithm to converge, and only two for the least
chi-sqare algorithm with six autocorrelation coefficients (CONRLM 4.011-6).
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CASE

UNITS SYMBOL 301 515-1 511-10

10 kpsi P1 20.04 19.7 19.95

10 kpsi P2  4.146 33.3 3.998

sec t .057 .0568 .0568

sec t 2  .056 .0564 .0565

sec t 3  .0557 .0558 .0558

sec .0027 .00279 .00270

sec 4 .00051 .000597 .000519

Hz f 327.6 344.4 361.08

No of
Iterations 18 19 21

Computing
Time (sec) 51.2 58.0 63.2
Experimenta (4)2(37

VarianceV 
)  NOT APPLICABLE (.45)2 (.317)2

TABLE I. Parameters Fitting Pressure Curve.

WAE 301 Sl1-S 511-10
ORDER

1 .717 .680 .696

2 .477 .27 .443

3 .286 .247 .248

4 .058 .027 .013

. -. 113 -.136 -.160
6 ..246 :.258 -. 291

7 * .303 *.315 -.346

a . 322 .334 :.361
1 -.307 -.312 -.342

10 . - 24 5 .240 -.276

.* -. 130 -. 104 *.153

12. -.011 .031 -.035

13. .069 .130 .048

14. .137 .217 .123
15. .110 .203 .106

16. .075 .168 .085
17. -028 .057 .0004

i2. -.14) -.068 -.090

19. -.202 -.149 -.130

20. -.235 -.205 -.145

$4u.

Sq.. 57.9 67.9 57.62

%12 57.9 62.96 116.2

1 2 33.01 62.4

8
TIT 95.97 78.6

Table 2. AutocorreilacQfl .nd Ch,-SquarE for fiual
0o,11 of D021 Preasurp Oscillations.
(8, based o the frSt 5 Autocorrelatflo
'O Cae 511*5, and the frst I0, for came
SI 1-10)
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CASB 4.012-0 4.011-6
NO. of Irtn. 2

L(0,4) 17.70 1.5
L(4,1) 53.11 53.02
L(4,2) 1.094 0.605
L(4,3) 6.204 10.26
8(1) 1 -.110

2 -.232
3 -.014
4 .068
5 -.124

6 .030

Sawof eqv .03147 .03138

X12 28.90 28-82
X 22 2.77 2.49

2 31.67 3131

Table 3. Results of Yaw Damper Calculations

ITEM/CA.S K'L 1.0021-0 KWS 1.0023- 0

L(I,2) .2155 .2199
L(2,I) .4527 "42
L(3,1) .0431 .031
L(4,1) .0252 ,0251
L(S,,) .0743 .0824

3(4) .122 -1086
R(2) .065 -.052
R(3) .009 .034

R(6) .227 -.223
R(5) .179 -. 16"

29

X 1 31.22 31.2 .

X2 2 3.99 3.0 3

X 2 35.21 34.28

Table 4. Results of Beookiiveo example calculatton.
AUtocorrelation, X , ad XT for case WE 1.0021-0
comlputed for comparison.

ITEM/CASE IR 1.003-0 M 1.005-3 KWB, 1.0007-6

L(11,1) 5.318 X1O_4 5.3183 X10
"
4 5.262 X 10-4

R(I) .782 ,782 .796
It(2) .44 .44 .453
R(3) .098 .098 -.122
R(4) -.204 -.170
R(5) -.316 -.274
R(6) -.235 .290

X 12 121.14 1.2 K to09 121.89

X 22 36.11 35.0

X 72 157.95 156.89

Table S. Results of Kinetic Exp~eriment Water boiler Calculations
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The times for one iteration were 8.2 and 8.5 sec respectively. (Part of
the increase in time for the least chi-square case was due to several
attempts in both iterations to improve the fit by reducing the step size.)
As shown in Table 3 the parameters L(0, 4), L(4,2) and L(4,3) appear to
be different by significant amounts. (The autocorrelations for case
4.011-6 appear well within the random range.) The normalized sum of
squares of the residuals is less, as expected, for the ordinary least
squares, Case 4.012.

Brookhaven Example. A sample test case was received from
Miss Rita Straub of Brookhaven National Laboratory. The exact nature
of the probem was unspecified but from the form of the differential
equations it appears to be a kinetic problem in which the material in
component one decays into components two to five, and component two
may change into component one. Component seven is composed of com-
ponents three, four, and five. Although some coupling parameters may
actually be unknown, they were assumed known, because the present
version of the program will not iterate either type of linear coupling
parameter with the least chi-square algorithm. The data were avail-
able for the amount of components 1, 3, 4, and 6 as a function of time,
(where component 6 is the sum of components 1, 2, and 5).

Both the run with no autocorrelations and the run with 5 corre-
lations (KJE 1.0023-5), took 7 iterations to converge. The r sults for
the two cases are compared in Table 4. Since the value of X, , (31.24)
is large compared to X (3.04), the major emphasis in this case was on
reducing the sum of squares, and thus it is similar to the case run
with no weight on the autocorrelations. As would be expected, there is
only a small difference between the final values of the parameters of
the two cases.

Reactor Kinetics Example. This example illustrates two things:
First the use of the least chi-square algorithm, and second an apparently
good fit between data and a physically incorrect model. Hetrick and
Gamble (13) proposed a non-linear feed-back term proportional to the
energy in the reactivity of the KEWB reactor to describe the fit.
Later experiments (16) where the void amount was inferred from measure-
ments and where the thermal effects on reactivity were also carefully
measured, showed that shutdown was due to thermal, not void effects.
In the simulation, the effect of the energy on void formation was simu-
lated by the parameter L(11, 1). The functions correspond, in numerical
order, to the functions used in the simulation: (1) Nuclear reactor
power level, (2) Mean temperature, (3) Mean void volume, (4)-(9) Delayed
neutron groups, (10) Not used, (11) Energy released to that time. The
result of the iterations is shown in Figure 4, a logarithm plot of
theoretical and experimental nuclear power. In Table 5, three different
cases are shown:
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Case 1.003-0 was ordinary least-squares. The values of the auto-

correlations and chi-squares are shown for comparison with the other
two cases. Case 1.005-3 used three autocorrelations with a small alue
of the experimental variance thus resulting in a large value of XI..
Both case 1.007-6 and 1.003-0 use 1 x 10 for the experimental variance
thereby reducing the emphasis on the sum of the squares of the errors.
All of these runs took four iterations to converge.

Cases 1.003-0 and 1.005-3 give almost exactly the same results. On
comparing 1.003-0 with 1.007-6, a difference is found in the value of the
adjustable parameter L(11,1). The value of chi-square total is smaller for
1.007-6, and thus this result would be chosen over that of the other case.

The value of the chi-square for he Box-Pierce number is much
smaller for case 1.007-6, although X is slightly larger for the
same case--thus illustrating the trade-off between getting the minimum

as in ordinary least squares, and reducing the autocorrelations as in
least chi-squares. The data for Case 1.003 show the values for R(1) to
R(6) for comparison purposes. The data show that the sum o5 squares
does not increase from one to the other appreciably, but X2 , the
Box-Pearce statistic, does change appreciably. Each of the calculations
give a total chi square which is too large to be consistent with the
residuals being drawn from a random sample, and thus would have given
support for the rejection of the Hetrick-Gamble model.

Comparison of Computing Time. Table 6 summarizes the comparison
of the number of iterations to converge, and the computing time. The
number of iterations was usually about the same. As seen in the last
column the computing time is comparable, with a tendency for the
computing time to be longer for least chi-square than for least squares.
The relative difference is greater when the original total computing
time is short. This just means that, as would be expected, it takes a
larger fraction of the computing time to compute the matrix I and post-
multiply into P*' for cases where the time of iteration is short.

Conclusions. Based on four different types of non-linear theoretical
models for data analysis, our results indicate that:

(1) Least chi-square is practicable for non-linear analysis.

(2) Least chi-square gives a better fit, and is a more reliable
iteration procedure.

(3) The computing time for least chi-square is longer for the
models which use less computing time, but because the convergence of
this iterative procedure is somewhat better, the number of iterations
(and particularly the number of "tries" per iteration) is reduced, thus
keeping the total computing time about the same. Those models with longer
integrating time would be expected to benefit more from least chi-square.
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(4) In validation of simulations of future Army systems, the
SAAM-27 computer program modified for least chi-square can be used at
various stages in the system development. First, as a tool to simulate
subsystems and compare the projected performance with the designer's
simulation. Second, as subsystems are built and tested, they can be
run as "hardware in the loop" and the test data used in the least chi-
square program to validate the computer simulation and provide system
parameter identification. Because no programming is needed to run
SAAM-27 on a variety of problems, both the programming time and the
elapsed time is greatly reduced.

By planning ahead to use SAAM in the validation of the subsystem
modeling and providing the needed subsystem tests, a Program Manager
can reduce the time and effort needed to validate the contractor's
system simulation and will be able to give an impartial, knowledgeable,
and timely evaluation of each system.

Acknowledgements: Mr J. Bay of ARRADCOM has capably performed the
programming needed to modify SAAM-27. Discussions with Dr. Ray Boston
of La Trobe University, Bundoora, Australia on details of the modifica-
tion of SAAM-27 have been essential for its success.
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No. of Adjustable Rank of Audo- No of Itera- Time
Case Parameters correlation tions (sec)

Gun Chamber Pressure
Curve. 8 0 is 51.2

8 5 19 58.0
8 20 21 63.7

Yaw Damper. 4 0 4 8.2
4 6 2 8.5

Biomedical Test
Case. 5 0 5 14.9

5 5 5 15.2
5 5 7 21.5

Reactor Kinetics
XPsri ent. 1 0 4 84

1 3 6 S1
I 6 4 89

Table 6. Comparison of computing time and number of iterations.
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